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Abstract. Text manipulation is one of the most common tasks for everyone
using a computer. The increasing number of textual information in electronic
format that every computer user collects everyday also increases the need
of more powerful tools to interact with texts. Indeed, much work has been
done to provide simple and versatile tools that can be useful for the most
common text manipulation tasks. Regular Expressions (RE), introduced by
Kleene, are well known in the formal language theory. RE have been ex-
tended in various ways, depending on the application of interest. In almost
all the implementations of RE search algorithms (e.g. theegrep [15] UNIX
command, or the Perl [20] language pattern matching constructs) we find
backreferences, i.e. expressions that make reference to the string matched
by a previous subexpression. Generally speaking, it seems that all kinds of
synchronizations between subexpressions in a RE can be very useful when
interacting with texts. In this paper we introduce the Synchronized Regular
Expressions (SRE) as an extension of the Regular Expressions. We use SRE
to present a formal study of the already known backreferences extension,
and of a new extension proposed by us, which we call the synchronized ex-
ponents. Moreover, since we are dealing with formalisms that should have
a practical utility and be used in real applications, we have the problem
of how to present SRE to the final users. Therefore, in this paper we also
propose a user-friendly syntax for SRE to be used in implementations of
SRE-powered search algorithms.
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1 Introduction

Text manipulation is one of the most common tasks for everyone using a
computer. The increasing number of textual information in electronic format
that every computer user collects everyday (email, web pages, word proces-
sor documents, even paper documents usually converted to electronic format
to save space) also increases the need of more powerful tools to interact with
texts. This is true at every level – from the beginner to the advanced user –
although expert users may have to perform tasks that can be accomplished
only by writing ad-hoc programs.

Indeed, much work has been done to provide simple and versatile tools
that can be useful for the most common text manipulation tasks.

Regular Expressions (RE from now on), introduced by Kleene, are well
known in the formal language theory. Today, RE are present in almost all
the text processing programs, mainly used in search/replace functions. Users
are familiar with this formalism, and this suggests to exploit all the power
of RE to perform much more complex operations on texts. RE have been
extended in various ways, depending on the application of interest. As an
example, wildcards like ’?’ or ’*’ are used as abbreviations of more complex
RE in all the operating system command shells.

Patterns introduced by Angluin [2] and also studied by other authors
(see [19] and [17] for an overview on patterns), are extended RE used to
find identical substrings in the same string. In almost all the implementa-
tions of RE search algorithms (e.g. the egrep [15], sed and awk UNIX
commands, or the Perl [20] language pattern matching constructs) we find
backreferences (defined in [1], see also [9]) as a generalization of patterns,
i.e. expressions that make reference to the string matched by a previous
subexpression.

Another interesting extension that, to the best of our knowledge, has not
been studied or implemented yet, may allow to find if certain subexpressions
are repeated the same number of times in a text. This can be useful in a variety
of cases, from integrity checks to advanced word count tools, especially
when mixed with other extensions such as backreferences.

Generally speaking, it seems that all kinds of synchronizations between
subexpressions in a RE (like backreferences) can be very useful when in-
teracting with texts. In this paper, we introduce the Synchronized Regular
Expressions (SRE) as an extension of RE. We use SRE to present a formal
study of the already known backreferences extension, and of a new exten-
sion proposed by us, which we call the synchronized exponents. We focus
on these kinds of synchronizations since they share very good properties:

– they appear to be useful in a significant number of cases;
– they can be implemented in a very user-friendly way strictly similar to

the use of ordinary wildcards (see Sect. 6);
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– they have an acceptable computational complexity, when used under
reasonable constraints (see Sect. 5).

We also think that such extended regular expressions, besides the exam-
ples we consider (see Sect. 6), may be found useful in a variety of other
data processing problems such as data compression and DNA sequences
reconstruction.

In this paper we give a formal syntax and a semantics for both extensions.
Then we study the classification of SRE in the formal languages hierarchy.
Finally, we study the complexity of the pattern matching problem.

Since we are dealing with formalisms that should have a practical utility
and be used in real applications, we also have the problem of how to present
SRE to the final users. We started looking at how backreferences and other
already implemented extensions are given to the user in well known pro-
grams and noticed that, despite their obvious utility, few people actually use
them.

Indeed, many nonprogrammer users are not able to write the often com-
plex commands (sometimes even small programs) needed to use these exten-
sions. Moreover, the implementations are nonstandard: users find difficult
to understand the new syntactic constructs proposed for such extensions in
each application. Backreferences, for example, have a recursive definition
that allows to nest expressions with their references, and to use the full RE
power in the binding operation. Instead, most users do not need all this
power, and their approach to backreferences is troublesome.

The second aim of this paper is to propose a user-friendly syntax for
SRE to be used in implementations of SRE-powered search algorithms. Our
syntax has two levels: the first, aimed at the “advanced users”, presents the
extensions in a fully functional fashion available through the RE syntax,
without the introduction of other complex constructs or the need of pro-
gramming. Nevertheless, the full syntax can also be seen as a high-level
programming language for algorithms that handle large quantities of struc-
tured data. In this way, SRE can help programmers to rapidly write the code
to solve complex data manipulation problems.

On the other hand, we identified a set of processing tasks that represent,
in our opinion, those that a beginner user may need, and in the second level
syntax we present a set of macro-constructs that accomplish these tasks
using very simplified, intuitive constructs.

The paper is organized as follows.
In Sect. 2 we define our Synchronized Regular Expressions and show

how to compute the languages associated to them. The SRE, as we will
see, introduce the concept of “synchronized elements” inside the regular
expressions.
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In Sect. 3 we study where such languages lie in the formal language
hierarchy, showing that they are context sensitive and, under certain condi-
tions, included in the Scattered Context Grammars [7] (a proper subclass of
context sensitive grammars). Moreover, we prove that there are context free
languages that cannot be generated by a SRE.

In Sect. 4 we address the membership problem in our context. We show
that the full membership problem turns out to be NP-complete. Thus, we look
for restrictions that can make the problem tractable. A first natural restriction
is to limit the number of occurrences of each synchronized element. But,
even when this number is bounded by 2, we prove that the problem remains
NP-complete.

In Sect. 5 we consider the other natural restriction, namely bounding the
number of synchronized elements. This time the membership problem turns
out to be polynomial.

In Sect. 6 we address the problem of defining a user-friendly syntax for
SRE, suitable to different kinds of users, and use this syntax to give a number
of concrete examples.

Sect. 7 contains a comparison between our approach and others, with
respect to both the theory of formal languages and the implementation of
regular expressions.

2 Synchronized regular expressions

In this section we define our extension of the classical RE. We start with a
brief introduction to the classical RE syntax and a description the pattern
extension from [17]. Then we give the definition of SRE using the syntax for
backreferences from [1] and introducing the new syntax for synchronized
exponents. The semantics of the new language is given in subsection 2.4,
followed by a collection of SRE examples.

2.1 Regular expressions

The canonical definition of RE is briefly recalled below. For a more detailed
overview on this argument, the reader may refer e.g. to [12].

Definition 1. The Regular Expressions on an alphabet A are the elements
of the set RE defined as follows:

– ∅ ∈ RE (empty language)
– ε ∈ RE (empty string)
– ∀a ∈ A a ∈ RE (letters)
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if e1, e2 ∈ RE, then:

1. e1 · e2 (or e1e2) ∈ RE (concatenation)
2. e1 + e2 ∈ RE (union)
3. e∗

1 ∈ RE (star)
4. (e1) ∈ RE (parentheses)

Definition 2. The language associated to a regular expression r ∈ RE is
LRE (r) where the function LRE : RE → 2A∗

is defined as follows:

1. LRE (∅) = ∅
2. LRE (ε) = {ε}
3. LRE (a) = {a} ∀a ∈ A
4. LRE ((e1)) = LRE (e1)
5. LRE (e1 · e2) = LRE (e1) · LRE (e2)
6. LRE (e1 + e2) = LRE (e1) ∪ LRE (e2)
7. LRE (e∗

1) = LRE (e1)
∗

2.2 Regular expressions with patterns

In this section we introduce the extension of RE from [2]. The pattern exten-
sion uses the same syntax we will adopt in SRE backreferences, so it seems
useful to introduce patterns before defining the SRE.

Definition 3. Let Σ be a finite alphabet containing at least two symbols and
X = {x1, x2, . . . xk} be a countable set disjoint from Σ of symbols called
variables. A pattern is any finite non null string of symbols from Σ ∪X .

The set of all patterns is denoted by P∗. Any function σ : P∗ → P∗
that is a none rasing homomorphism w.r.t. pattern concatenation (defined in
the obvious way) and acts like the identity when restricted to Σ is called a
substitution. In other words, a substitution takes a pattern and returns the
same pattern with some variables replaced with different variables or letters
(from Σ).

Definition 4. If p is a pattern, the language of p, denoted by LP (p), is
{α ∈ Σ+|∃σ : σ (p) = α}.

That is, the language of a pattern p is the set of all strings in Σ+ that can be
obtained by applying a substitution σ to p.

For example, if Σ = {a, b, c, . . .} and X = {x1}, the language of x1ax1
is β a β with β ∈ Σ+.
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2.3 Syntax of synchronized regular expressions

In this section we describe the syntax of Synchronized Regular Expressions.
Compared with the two languages introduced in the previous subsections,
SRE introduce the concept of synchronization between different parts of the
expression, thus achieving more expressive power.

Remark 1. In the following, when referring to SRE we use the word expo-
nent as a shorthand for exponent variable. That is, exponents are not numbers
but literals that can be instantiated with numbers (with the exponent binding
or assignment operation).

Definition 5. The Synchronized Regular Expressions on an alphabet A,
a set of variables V and a set of exponents X are the elements of the set
SRE defined as follows:

– ∅ ∈ SRE (empty language)
– ε ∈ SRE (empty string)
– ∀a ∈ A a ∈ SRE (letters)
– ∀v ∈ V v ∈ SRE (variables)

if e1, e2 ∈ SRE, then:

1. e∗
1 ∈ SRE (star)

2. ∀x ∈ X ex
1 ∈ SRE (exponentiation)

3. ∀v ∈ V (e1) %v ∈ SRE (variable binding)
4. e1e2 ∈ SRE (concatenation)
5. e1 + e2 ∈ SRE (union)

Backreferences are created using variables. A variable is bound to a string
from a given language using the binding operation (3). In this sense, SRE
variables can be seen as variables with a prescribed domain. For a detailed
study of this kind of patterns, see [6]. We will address variable occurrences
that are not arguments of a binding operation as backreferences.

Example 1. Some examples of correct synchronized regular expressions
include:

– a (b + c)∗ (as well as any other correct RE)
– ax (b + c)y (exponents used without synchronization – equivalent to

the star symbol of RE)
– ax b cx (a SRE with exponent synchronization)
– (b + c) %v a v (a SRE using a backreference v bound to the subex-

pression (b + c))
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The reader may refer to subsection 2.5 for some more complex examples of
SRE.

The backreferences syntax from [1] seems to be underspecified. Indeed,
it allows different interpretations (compare, for example, [1] with the more
end-user oriented [9]) since the intended meaning of some expressions im-
plies several restrictions that are not expressed in the syntax. These restric-
tions may cause problems to the user. In fact, the above definition allows:

– Multiple bindings on the same variable. For example, consider the fol-
lowing SRE:

(a∗) %v b v (b∗) %v c v

If, as natural, we suppose that a binding replaces the previous one on
the same variable, the language generation would rely on a not specified
“expression ordering”.

– Loops on variable bindings. These may cause deadlocks, as in the fol-
lowing example:

(v1 a) %v2 d (v2 b) %v1

Expressions containing binding loops always express the empty language
or do not generate any definite language, depending on the interpretation.

– Recursion on a variable binding. This is a special case of the previous
problem. The following is a simple example of recursion:

(a v b) %v

– Late binding. A variable could be used before being bound to an expres-
sion, for example:

a v b (c∗) %v

This may lead to various problems, and it is unnecessary in practice.

– Unbound variables. A variable could be used while no binding for it
occurs in the expression:

a v b v

A SRE with unbound variables does not express a definite language.

– Disjunction between an expression and its backreference. An expression
can bind a variable on one side of a sum “+” and backreference it on the
other side:

(a∗)%v + v

Since the evaluation of the two subexpressions is mutually exclusive, we
have an unbound variable in the right side.

To fix the syntax, we impose the following restrictions on valid SRE:
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Definition 6. A Synchronized Regular Expression is valid if, whenever the
expression is read left-to-right, the following holds:

1. Bindings are always done on fresh (i.e. not previously used) variables.
2. Backreferences always refer to bound (i.e. not fresh) variables.

Such restrictions solve all the above problems, with the exception of the
disjunction problem that is treated by the semantic rules in Sect. 2.4.

Proposition 1. A valid SRE does not allow:

1. multiple bindings on the same variable,
2. looped variable bindings,
3. recursive bindings,
4. late bindings,
5. unbound variables.

Proof. 1. Since the binding operation can only be used on fresh variables,
an already bound variable cannot be bound again.

2. To “loop” two variable bindings, each variable must appear in the ex-
pression that defines the other, but this would imply the use of a variable
before its binding.

3. Recursion is impossible for the same reason, since a variable is bound
only after the binding operation. This implies that in the binding expres-
sion the variable is fresh and cannot be used as backreference.

4. Late binding is directly disallowed by the second clause of Definition 6.
5. There cannot be unbound variables, since variables can only be used as

backreferences after being bound.

Remark 2. Since we shall consider valid SRE only, we stipulate that, from
now on, “SRE” stands for “valid SRE”.

2.4 Semantics of synchronized regular expressions

In this section we define the language generated by a SRE. Due to the
synchronization issues, the language cannot be unambiguously described
through a simple set of recursive rules, as done in Definition 2 for the regular
expressions. Therefore, we introduce a function, Eval, that decides whether
a string belongs or not to the language of a given SRE. Then, we define the
language associated to a SRE in terms of Eval.

The function Eval encodes the semantics of SRE as originally presented
in [1], using induction on the structure of expressions.

Let Eval (PS, VB, VF , EB) be our evaluation function, where

– PS is a set of (pattern, string) pairs;
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– VB is a set of (variable, string) pairs, representing all the variables
already associated to a string by a binding operation;

– VF is a set of (variable, string) pairs, representing the unsolved back-
references (variables used but not yet bound) and the strings they should
match;

– EB is a set of (exponent, number) pairs, representing all the exponents
already assigned.

The function is true iff, for every (pattern, string) pair in PS, pattern
matches string using the binding rules given in VB , VF and EB .

The rules for Eval are the following:

Eval ({(a, α)} ∪ PS, VB, VF , EB) =
Eval (PS, VB, VF , EB) ∧ (α = a)

Eval ({(e1e2, α)} ∪ PS, VB, VF , EB) =∨
α1α2=α Eval ({(e1, α1) , (e2, α2)} ∪ PS, VB, VF , EB)

Eval ({(e1 + e2, α)} ∪ PS, VB, VF , EB) =
Eval ({(e1, α)} ∪ PS, VB, VF , EB)∨
Eval ({(e2, α)} ∪ PS, VB, VF , EB)

where e2 is obtained from e2 by substituting the leftmost backreference of
each variable that is not bound in e2 with the corresponding binding taken
from e1. This solves the “disjunction problem” introduced in Sect. 2.3.

Eval ({((e) %v, α)} ∪ PS, VB, VF , EB) =
Eval ({(e, α)} ∪ PS, V ′

B, V ′
F , EB) ∧ (∀ (v, α′) ∈ VF (α′ = α))

where

V ′
B = (VB \ {(v, α′) |α′ ∈ A∗}) ∪ {(v, α)}

V ′
F = VF \ {(v, α′) |α′ ∈ A∗}

note that if Eval is applied only to valid SRE (see Definition 6), the rule for
V ′

B can be simplified deleting the multiple-binding check, thus yielding:
V ′

B = VB ∪ {(v, α)}
Eval ({(v, α)} ∪ PS, VB, VF , EB) ={

Eval (PS, VB, VF , EB) ∧ (α = α′) if ∃ (v, α′) ∈ VB

Eval (PS, VB, VF ∪ {(v, α)} , EB) otherwise

Eval ({(ex, α)} ∪ PS, VB, VF , EB) ={
Eval ({(en, α)} ∪ PS, VB, VF , EB) if (x, n)∈EB∨

n∈N Eval ({(en, α)} ∪ PS, VB, VF , EB ∪ {(x, n)}) otherwise

Eval ({} , VB, VF , EB) ={
true if VF = ∅
false otherwise

Given a string α and a SRE e, we say that α is generated by (i.e. belongs
to the language of ) e iff the expression Eval ({(e, α)} , ∅, ∅, ∅) returns true.
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Remark 3. From another point of view, we can also say that Eval solves
the pattern matching problem of e on α.

Given a string α and a pattern e, i.e. a regular expression (or a SRE in our
case), the pattern matching problem of e on α consists in finding an instance
of e that is identical to α (if it exists). Therefore, Eval ({(e, α)} , ∅, ∅, ∅)
also solves the pattern matching problem of e on α.

Note that the function Eval is always defined on every input. In fact, the
rules given above may extend the PS set, but always decrease the complexity
of its elements. When an element reduces to a single letter or variable it is
removed from the set without adding other elements, so finally the evaluation
reaches the exit rule where PS = ∅.

However, Eval is well defined only under the restrictions given in Def-
inition 6. Indeed, without such restrictions, Eval is always defined but
nondeterministic (because of the “multiple-binding problem” explained in
Sect. 2.3).

Definition 7. The language associated to a synchronized regular expression
e ∈ SRE is LSRE (e) where the function LSRE : SRE → 2A∗

is defined
as LSRE (e) = {α ∈ A∗|Eval ({(e, α)} , ∅, ∅, ∅)}

2.5 Examples

To evaluate a SRE more easily, the reader can actually assign all the ex-
ponents at the beginning of the evaluation. Definition 8 and Proposition 2
below show the correctness of this approach.

Definition 8. An exponent assignment for a set of exponents X is a function
σX : X → N that assigns a natural number to each exponent in the set X .
The SRE exponent expansion function expandσX : SRE → SRE expands
the exponentiations in SRE by replacing each subexpression having exponent
x ∈ X with n ∈ N repetitions of the same expression, where n = σX (x).
The definition of expandσX is as follows:

expandσX (e) =






v if e ≡ v

expandσX (e1) %v if e ≡ (e1) %v
a if e ≡ a

expandσX (e1)
∗ if e ≡ e1

∗

expandσX (e1) expandσX (e2) if e ≡ e1e2

expandσX (e1) + expandσX (e2) if e ≡ e1 + e2

expandσX (e1)
n , where n = σX (x) if e ≡ e1

x

(1)
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We have the following

Proposition 2. For every e ∈ SRE, LSRE (e) =
⋃

σX
LSRE (expandσX

(e)).

Proof. – LSRE (e) ⊆ ⋃σX
LSRE (expandσX (e))

For all α ∈ A∗, α ∈ LSRE (e) ⇒ α ∈ LSRE (expandσX (e)) where
σX is built using the set EB from the final step of the evaluation of
Eval ({(e, α)} , ∅, ∅, ∅). Note that Eval is defined and returns true in
this case since α ∈ LSRE (e).

–
⋃

σX
LSRE (expandσX (e)) ⊆ LSRE (e)

For all α ∈ A∗, α ∈ LSRE (expandσX (e))⇒ α ∈ LSRE (e) where, on
the right side, every time Eval has to evaluate an unassigned exponent
we choose the assignment given by σX . ��
Moreover, the reader may use a left-to-right version of Eval to evaluate

the SRE without exponents. An informal description of such left-to-right
Eval is the following:

– Since a backreference can only be done when the corresponding variable
is already assigned, at least the first binding expression cannot contain
backreferences. Thus, we begin assigning a value to each variable whose
associated expression does not contain backreferences (i.e. is actually a
RE).

– Now there is at least one new binding expression that is free from un-
bound variables (it backreferences the previous variables that have been
assigned). So we can assign a value to it and bind another variable, and
so on.

We have also formalized this version of Eval, but we omit it here to
shorten the exposition.

Example 2. SRE can define the well known non context free language
anbncn. Indeed, it can be generated by the SRE axbxcx.

Example 3. The SRE (A∗) %vv defines the non context free language of
squared words. Indeed, each of its instances is obtained by assigning a string
α ∈ A∗ to v and performing the variable substitution. So the language of
this SRE is

LSRE ((A∗) %vv) = {αα|α ∈ A∗}
that is the language of squared words.

Example 4. More complex SRE can be built, like the expression

ax (c + d) %vb∗vax.
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The language of this SRE is the following:

LSRE (ax (c + d) %vb∗vax) =

{ancbmcan|n, m ∈ N}∪
{andbmdan|n, m ∈ N}

3 Synchronized regular expressions in formal languages

In this section we classify the languages defined by Synchronized Reg-
ular Expressions in the hierarchy of formal languages. In the following,
we address with “Synchronized Regular Expression Languages”, or briefly
with L (SRE) the set of languages defined by SRE and with LSRE (e) the
language defined by the SRE e. In the same way, we use the expressions
L (RE), L (CF ) and L (CS) to denote the set of languages defined by RE,
context free grammars and context sensitive grammars, respectively, and
with LRE (e), LCF (G) and LCS (G′) the language defined by the RE e,
the context free grammar G and the context sensitive grammar G′, respec-
tively.

3.1 Synchronized regular expression languages are context sensitive

To show that the languages in L (SRE) are Context Sensitive [12] and that
the membership problem for SRE is in NP [10] (result that will be later used
in Sect. 4) we need to prove the following

Proposition 3. The language defined by a SRE can be accepted by a non-
deterministic Turing Machine in linear space and polynomial time w.r.t. the
input size.

Proof. Here, for input size we intend the length in characters of the string
to be accepted or rejected.

For a fixed SRE e, an instance of our problem contains a string α. We
have to find a nondeterministic Turing Machine M that, given the string α,
accepts it if α ∈ LSRE (e) or rejects it if α �∈ LSRE (e), using polynomial
time and linear space for its computation, w.r.t. |α|.

We define some constants to be used in the rest of the proof: Nv is the
number of variables used in e; Nx is the number of exponents used in e;
Ns is the number of “+” operators that appear in e. Observe that these are
constants since e is fixed.

As usual, we see all the nondeterminism of the machine included in a
preliminary step, called guess, where a nondeterministic black box makes



Synchronized regular expressions 43

all the choices about e, i.e. it selects a value for every exponent (we also
see asterisks as nonsynchronized, fresh exponents), and makes a choice for
each group of “+” operators in the expression (such operators are grouped
so that, e.g. the expression a + b + c is handled by a single choice).

Then, a deterministic Turing Machine is loaded with input:

– the string to accept or reject, α ;
– an encoding of all the decisions taken by the nondeterministic step, that

is:
– the binary-compressed number ni associated with each distinct ex-

ponent xi;
– a number si used to resolve each group of “+” operators (see below).

The length of the guess is linear w.r.t. |α|, since:

– the length of the exponent section is

Lx =

(
Nx∑

i=1

|ni|+ Nx

)

≤ Nx · (1 + log (|α|)) (2)

since every exponent cannot have a value greater than |α|. Moreover,
if ri is the number of times that the exponent xi occurs on e, we have∑Nx

i=1 (ni · ri) ≤ |α|.
– the total length of the choices for the “+” operators is

Ls ≤ |α| · (1 + log (|e|)) (3)

This bound can be explained as follows. Since “+” can be nested in
(one or more levels of) exponentiated subexpressions, the number of
operators involved is not directly Ns, the number of operators that appear
in e. Indeed, after the exponent expansion, more “+” can appear. To
encode the choices for these operators, we use a compressed integer si

that means ”the si-th argument of the union is chosen”. For example, in
a+ b+ c the number si = 2 would choose b. Since there cannot be more
arguments in a single sum than the total length of e, each compressed
number si will be long at most log (|e|). Finally, since each sum produces
at least one character of the final string (an empty sum result means that
a subexpression of the e is useless and can be ignored), there cannot
be more than |α| sums in the expanded expression e. This explains the
bound given above.

The machine M starts matching e with α using the information stored
by the guess. The machine states encode the position of e that M is trying
to match with the current character(s) of α read by the machine head. The
following table shows a summary of the possible states that the machine
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could enter while matching e with α, and the actions taken each time. In the
table, K stands for a fixed constant that can be easily deduced by the reader.

State Looking for a letter b

Action Accept if reading b, reject otherwise

Space –

Time 1

State Looking for a sum (β1 + . . . + βk)
Action Read the next sum guess si from the tape, move

back on α and change state to look for βsi . If
the number of guesses is insufficient, reject.

Space –

Time K · |α| (move to find si and back on α)

State Looking for a variable binding (ei) %vi

Action Change state to match ei with the current sub-
string of α. Reject if match fails, otherwise
save the substring that matched ei in a sepa-
rate area of the tape reserved for vi, move back
on α and continue with the next subexpression
of e.

Space The total length of the variable section is

Lv =

(
i=1∑

Nv

|vi|+ Nv

)

≤ Nv ·(1 + |α|) (4)

since each variable cannot be assigned to a
string longer than α.

Time K · |α| (substring copy)

State Looking for a variable vi

Action Make a copy on the tape of the guess for vi,
and try to match it with the current substring of
α with a character-by-character comparison.
Reject if match fails, otherwise move back on
α and continue with the next subexpression of
e.

Space |α| (variable copy, reusable)

Time |α|2 (copy and comparison)
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State Looking for an exponentiated subexpression
(e′)xi

Action Make a copy of the guess ni for xi. While
ni > 0, change state to match e′ with the
current substring of α. If the match succeeds,
change state, decrement ni and repeat, other-
wise reject. Since there can be nested expo-
nents, M will possibly maintain a list of coun-
ters for each nested loop.

Space Nx · log (|α|) (copies of each exponent guess
at the highest nesting level)

Time K · |α| · T (e′) (copy/decrement the counters,
move back on α and match e′)

State The matching of e has ended.

Action If reading past the last character of α accept,
otherwise reject.

Space –

Time 1

As the rows Space and Time show in the table, each step of M does not
require more than linear space and polynomial time w.r.t. |α|.

To sum up, the rules given will make the nondeterministic Turing Ma-
chine M to accept the string α iff α ∈ LSRE (e), using linear space and poly-
nomial time. This proves that L (SRE) ⊆ L (CS) (SRE are context sensi-
tive) and that the membership problem for SRE is in NP, respectively.
��

In Sect. 4.1 we use the following more general result to prove that the
membership algorithm for SRE is NP-Complete:

Corollary 1. There is a nondeterministic Turing Machine M ′ that, given
a SRE e and a string α, accepts the string if α ∈ LSRE (e) or rejects it if
α �∈ LSRE (e), using polynomial time w.r.t |α| + |e| and linear space w.r.t
|α| · log|e|.
Proof. We denote with |e| the length in characters of the SRE e. This time
the machine is not ”expression-specific“, (i.e. it is not designed for a specific
SRE), but completely general. For this reason, the numbers Nv, Nx and Ns

are no longer constants, but can be bounded by the input size:

Nv ≤ |e|
Nx ≤ |e|
Ns ≤ |e|

(5)



46 G. Della Penna et al.

Given this, we have the following new inequalities for the guess tape
length:

Le ≤ log (α) + |e| (6)

Lx ≤ |α|+ |e| (7)

Ls ≤ |α| · (1 + log|e|) (8)

The dominant term for space is |α| · log|e|. By substituting the new
expressions for Nv, Nx and Ns in the action table for M , we can actually
see that the space remains bounded by |α| · log|e|. Since the input size is
this time |α|+ |e|, we can say that the space requirement is subquadratic.

The time needed to accept or reject increases since the machine has to
read e from the tape step by step (and possibly make copies of its parts), but
this obviously does not take more than polynomial time. ��

3.2 Synchronized regular expressions and scattered context grammars

Scattered Context Grammars (SC grammars from now on) belong to the
family of grammars with controlled derivations [7]. Let us briefly recall
their definition:

A SC grammar is a quadruple G = (N, A, P, S), where:

– N, A and S are specified as in a context free grammar (that is they
are, respectively, the alphabet of non-terminal symbols, the alphabet of
terminal symbols and the start symbol), and

– P is a finite set of matrices

(ξ1 → γ1, ξ2 → γ2, . . . , ξk → γk)

where k ≥ 1, ξi ∈ N , and γi ∈ (N ∪A)∗, for 1 ≤ i ≤ k (the number k
can differ from matrix to matrix).

Given δ, η ∈ (N ∪A)∗ we say that δ directly derives η if and only if:

δ = δ1ξ1δ2ξ2 . . . δkξkδk+1, for some δi ∈ (N ∪A)∗ , 1 ≤ i ≤ k + 1
η = δ1γ1δ2γ2 . . . δkγkδk+1
(ξ1 → γ1, ξ2 → γ2, . . . , ξk → γk) ∈ P

Then we can define in the usual way the notion: δ derives η in zero or more
steps (δ ⇒∗ η).
The language generated by a SC grammar G, denoted by as LSC (G), is
defined as

LSC (G) = {α ∈ A∗|S ⇒∗ α}
It is known that (see [7]):
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– the languages of SC grammars without erasing productions are included
in context sensitive languages;

– the languages of SC grammars with erasing productions coincide with
that of recursively enumerable languages.

In the following we reserve the name SC for the scattered context grammars
without erasing productions.

We introduce a proper subclass of SRE, namely the 1-level or “flat” SRE.
1-SRE are a yet useful but much less complex subclass of SRE that can be
naturally placed in the hierarchy of grammars with controlled derivations as
a proper subclass of SC grammars. We were not able to prove whether the
same holds for general SRE.

Definition 9. 1-level SRE (1-SRE) are SRE where variables and exponents
cannot be nested (i.e., variables and exponents cannot appear inside an
exponentiated expression or in the expression that is bound to a variable)

Proposition 4. Every 1-SRE language that does not contain the null string
ε is in SC.

Proof. SC are proven in [7] to be an extension of context free (CF) grammars,
SRE are an extension of regular expressions (RE), and we already know that
L (RE) ⊂ L (CF ). To shorten the exposition, we only give a sketch of the
proof that a SC grammar can cope with the extensions of RE introduced in
1-SRE. These extensions are variables and exponents, which we shall call
synchronization elements, used at the outermost (not nested) level.

A generic 1-SRE with only variables and exponentiated subexpressions
can be written as follows:

e1e2 . . . ek with ei =






e′
i
xi

vi

(e′
i) %vi

(9)

We know that some variables could be erased, by setting vi = ε if
ε ∈ LRE (ei), and that all exponentiated expressions can be erased by setting
xi = 0. Actually, we cannot have erasing effects in our SC grammars, so
we first rewrite the expression (9) as the union of several 1-SRE

∑
ei1ei2 . . . eil (10)

where each expression in the sum is obtained from (9) by deleting zero or
more elements ei, taking into account the synchronizations, and the sum is
over all the possible combinations of element deletions.

The equivalence between the two languages of (9) and (10) is straight-
forward. Now we can impose that every synchronized element in (10) must
not be erased (i.e., variables cannot be assigned to ε and exponents cannot
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be assigned to 0), since for every combination of erasable elements in (9)
we have a subexpression in the disjunction (10) that exactly does not present
those elements.

Given a generic element of the union (10) we start building the corre-
sponding SC grammar with the rule:

S → ξ1ξ2 . . . ξl (11)

Then, for each nonterminal ξi, we write a set of rules depending on the
kind of the synchronization element ei.

1. if ei ≡ e′
i
xi , suppose that this element is synchronized with m other

elements ej1 , . . . , ejm , that is ej1 ≡ e′
j1

xi , . . . , ejm ≡ e′
jm

xi . Then we
write the following grammar for the nonterminals ξi, ξj1 , . . . , ξjm :

(
ξi → ξiξ

′
i, ξj1 → ξj1ξ

′
j1 , . . . , ξjm → ξjmξ′

jm

)
(
ξi → ξ′

i, ξj1 → ξ′
j1 , . . . , ξjm → ξ′

jm

) (12)

where each ξ′
i is the start symbol for the grammar that produces the

language of e′
i, etc.

Note that in 1-SRE these subexpressions are always standard RE so we
assume there is a CF grammar that produces their language. The paral-
lelism in the grammar given in (12) forces the synchronization between
the number of repetitions of e′

i, e
′
j1 , . . . , e

′
jm , that must be greater than

zero.
2. if ei ≡ (e′

i) %vi, suppose that this element is synchronized with m other
elements ej1 , . . . , ejm , that is ej1 ≡ . . . ≡ ejm ≡ vi. Since in a 1-SRE
e′

i must be a simple regular expression, we know that we have a CF
grammar G that produces the language of this subexpression. Since, by
our assumptions, the grammar cannot contain null productions (that are
considered separately), we first rewrite the grammar to prevent it from
producing the empty string.
Suppose that the grammar G has start symbol S′, is composed by a set of
productions P = {R0, . . . , Rk} and that its nonterminals are fresh. Then
we write the following grammar for the nonterminals ξi, ξj1 , . . . , ξjm :

(ξi → S′, ξj1 → S′, . . . , ξjm → S′)
(R0, R0, . . . , R0)︸ ︷︷ ︸

m times
...
(Rk, Rk, . . . , Rk)︸ ︷︷ ︸

m times

(13)

The parallelism in the SC grammar forces the synchronization between
the contents of the synchronized variables, since their productions can
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be applied only to all the variables at the same time. Note that this is true
due to the fact that the language of each e′

i is regular and so the grammar
associated to each ξi is in turn regular.

Finally, we write the grammar for the entire union (10) as the (finite) union
of all the languages of the corresponding subexpressions, built as explained
above. ��

3.3 Synchronized regular expressions
do not generate all context free languages

We show that the languages generated by the Synchronized Regular Ex-
pressions on an alphabet with more than one letter do not contain all the
context free languages on the same alphabet. To this aim, we make use of
the language of palindromes. It is known that this language is context free:
for example, it can be generated by the simple grammar:

S → ε , S → aSa, ∀a ∈ A

In the proof of the following proposition we need a complexity measure
on subexpressions of SRE.

Definition 10. Let e be a SRE and e′ be a subexpression of e (i.e. e = e1e
′e2,

where e1, e2 are possibly empty). The weight of e′ is defined as the sum of
the number of exponents and variable bindings it contains, plus the weight
of all the subexpressions of e bound to variables backreferenced in e′.

Observe that the previous recursive definition is correct due to the re-
striction on backreferences given in definition 6.

Proposition 5. No Synchronized Regular Expression can generate the lan-
guage of palindromes on an alphabet A with |A| > 1.

Proof. It is known that, if A contains at least two letters, there exist words
of any length in A∗ that do not contain cubes [5]. This implies that there are
also palindromes of any length that can be split in two halves each of which
does not contain cubes.

In this proof we show that if a SRE e produces only palindromes, then
there exists a length l s.t. all the palindromes produced by e longer than l
contain cubes in one of their halves. This implies that there is no SRE that
can generate the language of all palindrome strings.

Suppose there exists a SRE e that generates infinite palindromes without
cubes. Thus, we can say that there exists a subexpression e′ of e that generates
infinite words without cubes (possibly e′ = e).
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Let e′ [v1, . . . , vn] be the minimal (w.r.t. Definition 10) subexpression
of e that generates infinite words without cubes. Let the bindings for the
variables backreferenced in e′ be (e′

i) %vi with i = 1 . . . n. Note that these
bindings can appear both inside or outside e′.

Each e′
i has a weight smaller than e′, since by Definition 10 an expression

weight sums all the weights of the backreferenced variable bindings.
Thus none of the e′

i can produce infinite words without cubes, because
this would contradict the hypothesis that e′ is the minimal subexpression
with this property. This implies that each e′

i can only produce a finite set Bi

of words without cubes. Let B1, . . . , Bn be an enumeration of all such Bi.
We make all the possible variable substitutions in e′ with the values taken

from the sets B1, . . . , Bn, thus obtaining a (finite) set of SRE of the form:

e′ [α1/v1 , . . . ,
αn /vn ]∀αi ∈ Bi (14)

(where the notation αi/vi means that the variable vi has been replaced by the
word αi) each of these SRE obviously maintains the property of generating
infinite words without cubes.

Let e′′ be one of the SRE obtained from the substitution above: the
number of backreferences used in e′′ is smaller than those used in e′, and in
particular e′′ does not contain any backreference to the outer expression, so
it may again be considered a “standalone” SRE that generates infinite words
without cubes.

If e′′ contains variables, we can reiterate the process above, find its mini-
mal subexpression with the same property, instantiate all the backreferenced
variables, etc. On every iteration we decrease the number of variables in the
generated expressions, so finally we obtain a set of expressions without
variables each of which can generate infinite words without cubes. Let us
consider one of these expressions and call it ē.

The only way ē has to generate words of any length is to use expo-
nents (and stars, but we may consider them as unsynchronized exponents)
to replicate one or more of its subexpressions.

Let (¯̄e)x be the minimal exponentiated subexpression of ē (w.r.t. the
number of exponents that appear in the expression) that produces infinite
words without cubes.

We know that ¯̄e alone cannot produce infinite words without cubes, be-
cause it has one exponent less than (¯̄e)x and this would contradict the hy-
pothesis that (¯̄e)x is minimal. But this also implies that ¯̄e cannot contain
exponents at all, because using exponents it would produce infinite words
with cubes, and so would do (¯̄e)x in contradiction with the hypothesis.

Thus we can say that ¯̄e only produces a finite number of different words,
that is we can rewrite it as a finite sum of words. We have that:

(¯̄e)x = (α1 + . . . + αn)x (15)
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Now we go back to the initial expression e. We found that if we instantiate
all the variables and all the exponents except one we end with an expression
of the form:

α (α1 + . . . + αn)x γβ (16)

We suppose for generality that the subexpression (α1, . . . , αn)x is backref-
erenced one time in e. If there is no backreference, the rest of the proof is
trivial. If there is more than one backreference, the proof we show below
can be applied as well. Moreover, to simplify the proof, we set n = 2 in the
subexpression and call α1 = X and α2 = Z. So the general expression we
have is:

α ((X + Z)x) %vγvβ (17)

by hypothesis this expression must produce infinite palindromes without
cubes. Before we give the final section of the proof, we need to prove the
following property:

Claim. For every X, Y, α ∈ A∗ with X �= Y , XαY = Y αX ⇒ ∃β, γ ∈
A∗, n, m, p ∈ N s.t. X = (βγ)n β, Y = (βγ)m β, α = (γβ)p γ.

Proof. We proceed using induction on the length of XαY . If one of the three
strings is empty, then our thesis follows from the Defect Theorem [14]. Thus,
the minimal length is 3 and the base of our induction is X = a, Y = b, α = c
for some a, b, c ∈ A. But if acb = bca then a = b, and the equations in our
thesis are satisfied choosing β = a, γ = c, n = m = p = 0.

Now, for the inductive step, suppose |Y | > |X| > 1 (the case with
|X| > |Y | > 1 is equivalent). Then from

XαY = Y αX (18)

follows that Y = XδX .
By substituting the value for Y in (18) and simplifying the resulting

expression we obtain:
αXδ = δXα (19)

since |δ| < |Y | this expression is shorter than (18), so we can apply the
inductive hypothesis. The values for α, X, δ in (19) follow from our thesis:

α = (βγ)n β
δ = (βγ)m β
X = (γβ)p γ

(20)

By substituting these values in the equation for Y we obtain that the values
for X, α, Y in (18) are:

X = (γβ)p γ

Y = XδX = (γβ)p γ (βγ)m β (γβ)p γ = (γβ)2p+m+1 γ
α = (βγ)n β

(21)

which is what we wanted to prove. ��
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Now we are back in the main proof. We have the following expression:

α ((X + Z)x) %vγvδ (22)

and we know that is must produce infinite palindromes. To further simplify
the equations, suppose |α| < |δ|, so since the expression above is a palin-
drome we have that δ = βα−1 (where α−1 is α reversed). In the other cases
the proof is still the same or simpler.
We can rewrite the expression (22) as:

((X + Z)x) %vγvβ (23)

Suppose that |X| > β, |Z| > β, |γ| > β (a proof can be given also in the
other cases):

– For x = 1, the expression XγXβ must be a palindrome. So X = β−1Y
and we obtain the palindrome Y γβ−1Y . This implies that Y and γβ−1

must also be palindromes. We can also write γ = βα with α palindrome.
– Since ZγZβ is a palindrome we have in the same way that Z = β−1W

with W palindrome.
– Another palindrome is XXγXXβ. This can be rewritten using the sub-

stitutions obtained in the previous points as β−1Y β−1Y γβ−1Y β−1Y β.
Since we know that Y and γβ−1 are palindromes, we derive that also β
is a palindrome.

– Finally, consider the palindrome XZγXZβ. By substitut-
ing the values found for X, Z and γ we have the palindrome
β−1Y β−1Wβαβ−1Y β−1Wβ. This implies that Y β−1W must be
a palindrome, that is Y β−1W =

(
Y β−1W

)−1 = W−1βY −1 =
Wβ−1Y .

By applying Claim 3.3 to the last expression we have that, for some β̄, γ̄ ∈
A∗ and n, m, p ∈ N:

Y =
(
β̄γ̄
)n

β̄
W =

(
β̄γ̄
)m

β̄
β−1 =

(
γ̄β̄
)p

γ̄
(24)

From these values we obtain the values for X and Z in (23).

X = β−1Y =
(
γ̄β̄
)p

γ̄
(
β̄γ̄
)n

β̄ = (γβ)p+n+1

Z = β−1W =
(
γ̄β̄
)p

γ̄
(
β̄γ̄
)m

β̄ = (γβ)p+m+1 (25)

We can finally rewrite the expression (23) as

α
((

(γβ)p+n+1 + (γβ)p+m+1
)x)

%vγvβ (26)
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Remark 4. If we supposed to have more than two expressions in the dis-
junction (22), then we could apply the method above using as X and Z all
the possible pairs of expressions in the sum. For example, if n = 3 from the
sum (X + Z + Y ) we obtain
X = (γ1β1)

p1+n1+1, Z = (γ1β1)
p1+m1+1 for the pair (X, Z) and

Z = (γ2β2)
p2+n2+1, Y = (γ2β2)

p2+m2+1 for the pair (Z, Y ).
This implies that Z = (γ2β2)

p2+n2+1 = (γ1β1)
p1+m1+1 and for the De-

fect Theorem [14] we have that (γ2β2)
p2+n2+1 = (η)k = (γ1β1)

p1+m1+1.
By applying this method to all the pairs, we end with all the expressions
reduced to powers of a same common subexpression, as in the previous
case.

The expression (26) must produce infinite palindromes whose halves do
not contain cubes. But the only part of the expression that can be used to
produce longer words is the exponent x, and applying an exponent greater
than three to x leads to words with squares and cubes. Since α is fixed, we
know that there is a value l s.t. for all x > l a cube appears in the first half
of the produced palindrome. This contradicts our hypothesis.
Thus a SRE that produces the language of all palindromes does not exist. ��

4 Complexity of membership algorithm for SRE

Here we show the complexity of the membership test for SRE, and look
at some restrictions that may lower this complexity while leaving enough
expressiveness to the language.

4.1 Membership for SRE is NP-complete

We already proved (in Sect. 3.1) that the membership problem for SRE is
in NP. Moreover, the membership problem for Regular Expressions with
backreferences has already been proved to be NP-Complete [1], and this
obviously extends also to our SRE. By membership problem we mean the
uniform membership problem. Such problem can be specified as follows:
given a SRE e and a string α, decide whether α ∈ LSRE (e). On the other
hand, the non uniform membership problem has the expression e fixed once
for all and has always polynomial complexity (see also Sect. 5).

However, we want to prove that even for SRE without backreferences,
that is only with synchronized exponents, the membership is NP-Complete.
We proceed by reducing the well-known 3-CNF problem (satisfiability
of boolean expressions in conjunctive normal form with three literals per
clause) to the SRE membership problem through a polynomial transforma-
tion. To do this, we use Synchronized Regular Expressions with exponents
synchronized several times.
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It is natural to ask whether the complexity could be reduced if each
exponent is repeated only twice, i.e. only one synchronization per exponent
is allowed. We answered this question in the negative by showing that even if
only one synchronization per exponent is allowed, the membership problem
remains NP-Complete. This means, in a sense, that there is no complexity
growth if the number of synchronizations per exponent in the expression
increases.

Proposition 6. The 3-CNF problem can be reduced to the membership
problem for SRE without backreferences (with exponents only).

Proof. Let F be a boolean formula in 3-conjunctive normal form.
Let C1, . . . , Cn be its clauses, and l1, . . . , lm be its variables. Each clause
Ci has the form (Li1 ∨ Li2 ∨ Li3) where Lij can be lk or l̄k, for some
k ∈ {1, . . . , m}.

We assign an exponent of our pattern xi to each boolean variable li, so
that

xi = 1⇔ li = false
xi = 0⇔ li = true

In the following we will build step-by-step a SRE, that we shall call
pattern, and a string. We say that the pattern matches the string iff the string
is in the language generated by the pattern.

First of all, we need the “negation” x̄i of each exponent xi, i.e. the
exponent that corresponds to the negation of the associated variable. To get
it, we use the following pattern - string pair:

Pattern: NPi = axiax̄ib
String: NS = ab

that also constrains our exponents in the range {0, 1}. If the pattern matches
the string, then either xi or x̄i is 1 and the other exponent is 0.

For each clause Ci = (Li1 ∨ Li2 ∨ Li3), we write the corresponding
pattern

Pi = axi1 axi2 axi3 a∗ (27)

where

xij =
{

xk if Li1 = lk
x̄k if Li1 = l̄k

(28)

and the string
Si = aa (29)

Now by concatenating all clause-patterns, using b as a separator, we obtain
the following formula-pattern:

FP = P1 b P2 b · · · bPn (30)
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The corresponding string is

FS = aab aab · · · aab︸ ︷︷ ︸
n−times

(31)

It is easy to see that the pattern FP matches the string FS if and only if
each clause-pattern Pi matches the string aa. This can happen if and only
if at least one of the three exponents xi1 , xi2 , xi3 is zero, so that the pattern
produces less than three a (the a∗ that terminates each clause-pattern is used
to clear all the remaining a in the string).

Let us suppose that xij = 0. By hypothesis, this means that

– if xij = xk, then Ci = (. . . ∨ lk ∨ . . .). But xk = 0 ⇒ lk = true.
Therefore Ci = true.

– if xij = x̄k, then Ci =
(
. . . ∨ l̄k ∨ . . .

)
. But x̄k = 0 ⇒ l̄k = true.

Therefore Ci = true.

If every pattern Pi matches the string aa, then there is at least one true
boolean literal in each clause Ci, which is also true, so that the whole boolean
formula is satisfied.

Finally, to obtain the complete pattern and target string, we append the
negation-patterns and strings as follows :

P = FP NP1 . . . NPm

S = FS NS . . . NS︸ ︷︷ ︸
m−times

(32)

Here a successful pattern matching ensures that

– every x̄k is the negation of xk (in the sense we described above), and
both range in {0, 1}.

– the boolean variable assignment on l1, . . . , lm corresponding to the val-
ues of x1, . . . , xm makes true every clause Ci.

This implies that F is satisfied by the variable assignment determined
by a pattern matching of P on S.

To measure the complexity of the transformation from the boolean for-
mula F to the (pattern, string) pair (P, S), we consider both the output string
and pattern as character sequences and recall here how many characters are
written by each step of the above generation process. We also consider ex-
ponents on letters like extra characters (each exponent is one character long)
in the sequence.

– The creation of negated exponents takes 5 characters of pattern and 2
characters of string for each boolean variable in the formula.

– The creation of clause-patterns takes 8 characters of pattern and 2 char-
acters of string for each clause.
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Thus the full pattern (including separators) takes 9 characters for each clause
and 5 for each variable, while the full string takes 3 characters for each clause
and 2 for each variable.

We can roughly give an upper bound of the transformation complexity
saying that the output is 20n characters long, where n is the number of
characters the string representation of the input formula F (that is obvi-
ously greater than the sum number of variables+number of clauses).

So we can reduce the 3-CNF-SAT problem to a membership problem
with synchronized exponents with a polynomial transformation. Since the
3-CNF-SAT problem is known to be NP-complete, our membership problem
is also NP-complete. ��

In the next subsection we show that two or more different exponents
ranging in {0, 1} can be synchronized without the need of explicit synchro-
nization (i.e. not using the same exponent in all cases). Using this technique,
we may rewrite the proof above using only pairs of explicit exponent syn-
chronizations (i.e. the same exponent is used only twice). Since the transfor-
mation is polynomial, we ensure that the proof given above is valid regardless
of the number of synchronizations used. Therefore, we have the following:

Corollary 2. The membership problem for SRE without backreferences is
NP-Complete.

4.2 Synchronizing the value of different exponents

Here we show a simple method that forces the synchronization of different
exponents ranging in {0, 1}. For a more detailed overview on the pattern
synchronization techniques used in this section, the reader may refer to [16].

Let x, x1, . . . , xn be distinct exponents with x ∈ {0, 1}. We want to
synchronize the values of x1, . . . , xn with that of x.

We can accomplish this with a pattern matching that uses these exponents
but makes no use of explicit synchronization and an alphabet of three letters.

We build a pattern in the following way:

b∗c∗ax[b∗axi ]i=1...nb∗ca∗ [b∗a∗]
︸ ︷︷ ︸

n−times

b∗c∗ (33)

The notation d∗ stands for dy where y is a fresh variable (that is, we use
the star as a generic exponent not synchronized).

The string that the pattern should match is as follows:

bca [ba]
︸︷︷︸

n−times

bc (34)
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For example, for n = 2 we have:

Pattern: b∗c∗axb∗ax1b∗ax2b∗ca∗b∗a∗b∗a∗b∗c∗
String: bcabababc

We state that the pattern matching between the given pattern and string
synchronizes all the variables of the pattern to the same value. The proof is
trivial and below we only sketch its basic steps.

First of all we note that the pattern contains a constant (without exponent)
c. Such a letter must match one of the two c’s in the target string.

1. If the constant c matches the first c in the string, then the preceding part
of the pattern must produce a single b. This implies that x, x1, . . . , xn

are all set to zero. It is then easy to see that the remaining part of the
pattern matches the remaining part of the string:

b∗ c∗ ax b∗ ax1 b∗ ax2 b∗ c a∗ b∗ a∗ b∗ a∗ b∗ c∗
b c a b a b a b c

(35)

2. If the constant c matches the second c of the target string, then all the
string must be produced by the pattern b∗c∗ax[b∗axi ]i=1...nb∗c. This im-
plies that the fragment b∗c∗ must match bc, since it is the only part of
the pattern that can produce another c, and the pattern ax[b∗axi ]i=1...nb∗
must match the string a [ba]

︸︷︷︸
n−times

b. This is true if and only if x, x1, . . . , xn

are all set to one:

b∗ c∗ ax b∗ ax1 b∗ ax2 b∗ c a∗ b∗ a∗ b∗ a∗ b∗ c∗
b c a b a b a b c (36)

So we know that the pattern can match the string in two ways only. In
both ways the variables x, x1, . . . , xn have all the same value, zero or one.
Once the value of x has been set, then there is only one possible match that
sets all the other exponents x1, . . . , xn to the same value of x.

4.3 Synchronizing groups of different exponents in the same expression

Finally, we show how to extend the technique described in the previous
section to synchronize several groups of different exponents in the same
pattern. In Proposition 6, these groups are the (different) exponents used to
represent the same boolean variable in each clause.

Let
(
x1, x11 , . . . , x1n1

)
. . .
(
xm, xm1 , . . . , xmnm

)
with m > 1 be expo-

nents, and xj ∈ {0, 1} , ∀j ≤ m. We want to synchronize all the exponents
in each group xj , xj1 , . . . , xjnj

using a single SRE.
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A simple approach is to introduce a new letter (d in the following exam-
ples) and use it as a separator between synchronization subpatterns created
as explained in the previous section.

Let Pj , Sj be the pattern and the string used to synchronize the exponents
xj , xj1 , . . . , xjnj

∀j ≤ m; we build the composite pattern:

P1dP2d . . . Pm (37)

In the same way we build the composite target string:

S1dS2d . . . Sm (38)

The correctness proof of this approach is simple. Since there are exactly
m−1 occurrences of the constant d in the pattern, and only m−1 occurrences
of d in the target string, the only possible match is the one that makes them
correspond, forcing each sub-pattern Pj to match with the sub-string Sj and
thus obtaining the requested synchronization.

A refinement of this approach allows us to avoid the introduction of a
new letter in the pattern. Since in Pj letters a, b, c appear in a small number
of configurations, we can use a combination that does not conflict with the
synchronization patterns as a separator.

If we use the string bb as a separator, then the resulting pattern and string
are:

Pattern: P1bbP2bb . . . Pm

String: S1bbS2bb . . . Sm

For example, for m = 2, n1 = n2 = 2 we have:

Pattern: b∗c∗ax1b∗ax11 b∗ax12 b∗ca∗b∗a∗b∗a∗b∗c∗
bb b∗c∗ax2b∗ax21 b∗ax22 b∗ca∗b∗a∗b∗a∗b∗c∗

String: bcabababc bb bcabababc
It is clear that the constant substring bb in the pattern must match one of

the two identical (overlapping) sequences in the string. However, if the pat-
tern bb matches the second sequence (40), then P1 must match bcabababc b,
and this is impossible since after producing the second c, P1 cannot produce
anything else, while the string has another b to match.

The only possible match must align with the separator bb in the same
way it does with the separator d (39), so the synchronization is correct.

· · · a∗ b∗ a∗ b∗ c∗ b b b∗ c∗ ax2 b∗ ax21 · · ·
· · · · · · b a b c b b b c a b a b · · · (39)

· · · a∗ b∗ a∗ b∗ c∗ b b b∗ c∗ ax2 b∗ ax21 · · ·
· · · b a b c b b b c a b a b · · · (40)

The previous discussion shows that
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Proposition 7. The membership problem for SRE that

– do not contain backreferences, and
– contain exponents synchronized at most twice,

is NP-Complete.

Using the same technique, we can also improve a result of [2] as follows:

Proposition 8. The membership problem for SRE that

– do not contain exponents,
– contain each backreference at most twice (including the binding occur-

rence), and
– the SRE backreferenced is always A∗,

is NP-Complete.

We omit the proof for brevity, since it is similar to the proof of Proposition
7. Observe that, by the third hypothesis, variables behave as those in [2].

5 Synchronized regular expressions
with limited synchronization elements

In Sect. 4 we proved that the general pattern matching problem with SRE is
NP-Complete even with an alphabet of only two symbols or when we limit
the number of synchronizations for each variable or exponent. This is true
for expressions containing variables, exponents or both.

However, examples of SRE like those in Sect. 6 show that, in real appli-
cations, the number of synchronization elements used in a single expression
is often very small. Typical applications can safely fix a limit on the number
of variables and/or exponents that the user can write in each expression.
This limit is often suggested by the application domain itself.

When the number of synchronized variables and exponents in the expres-
sion is constrained (but not the number of times each of these can be used),
the complexity of the SRE membership problem becomes polynomial. This
has already been stated for backreferences only [1]. Here we expand the
proof by extending it to exponent synchronization.

Remark 5. When we state that the number of synchronized elements is fixed,
we should also take into account the nested expressions. That is, for example,
an exponentiated variable ((v)x) counts as two elements.

5.1 A simple polynomial algorithm for SRE pattern matching

This algorithm has some similarities with the dynamic programming,
but is actually enumerative. Likewise dynamic programming algo-
rithms, we have a notion of state. Our states are tuples of the form
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(pattern, string, assignments) that exhibit the pattern, the string it must
match and the assignments done to variables and exponents so far, respec-
tively. The initial state s0 contains the pattern and string given to the algo-
rithm by the user, and the assignments are empty.

For convenience, we view patterns split in tokens. Looking at a pattern
from left to right, tokens are the longest subpatterns of the following kinds
(the first rule has the highest precedence):

1. an exponentiated subpattern
2. a variable (binding or backreference)
3. a subpattern without any exponent or variable (a standard RE).

Let Si be the set of states at the ith iteration of the algorithm. Initially
S0 = {s0}. At every iteration i the algorithm considers the leftmost token
in the pattern for each state in Si−1 and

1. if the token cannot match a prefix of the associated string, it does nothing;
2. if the token can match a prefix of the associated string in one or more

ways, it tries all the possible matches; every match creates a new state
in Si where the used token and possibly the matched string prefix are
changed, and all the assignments done to variables and exponents are
updated.

Thus, the algorithm carries out “in parallel” all the possible matches.
When we say that we try every possible match between a token and a

string we mean the following:

1. A variable binding can match every string prefix that its associated SRE
can. The algorithm continues matching the SRE subexpression recur-
sively. When the end of the subexpression is reached, the assignments of
each reached state are updated by adding a new binding for the variable
to the matched prefix.

2. An exponentiated expression whose exponent is not bound can match
the string for every value of the exponent in [0 . . . n], where n is the
length of the string. This rule will generate a new set of states where the
exponentiated expression is substituted by n repetitions of the expression
itself (without exponent), for n ∈ [0 . . . n]. The assignments of each state
are updated by adding a new binding for the exponent to n.

3. A standard RE can also have different matches, when the star and the
’+’ character are used. This rule will generate a new set of states where
the RE subexpression is deleted from the pattern and the matched prefix
is deleted from the string.

4. A backreference acts like a constant RE.
5. An exponentiated expression whose exponent is already bound to a num-

ber acts like the specified number of repetitions of the expression (without
exponent).
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The algorithm stops when it generates the empty state (string and pattern
are empty), meaning that the match is successful, or when the new state set
is empty, i.e. the match cannot be carried out in any way.

Example 5. We want to find if the SRE ab(bc)x(d + b)%v(b + c)vax can
generate the string abbcdbda.

The initial state set is S0 =









ab(bc)x(d + b)%v(b + c)vax

abbcdbda
{}










The pattern tokens are

ab, (bc)x, (d + b)%v, (b + c), v, ax

Step 1. The leftmost token in the first state is ab, that can match the string
prefix in only one way. So, the new state set is

S1 =









(bc)x(d + b)%v(b + c)vax

bcdbda
{}










Step 2. The leftmost token now is (bc)x. It can match the string prefix in
two ways, that is for x = 0 and x = 1 (the general algorithm says that we
should try with every x from zero to six, but we cut the search tree to have
a smaller example). So our new state set contains two possible states:

S2 =









(d + b)%v(b + c)vax

bcdbda
{x = 0}



 ,




bc(d + b)%v(b + c)vax

bcdbda
{x = 1}










Step 3. The leftmost token in the first state of S2 is the variable binding
(d+b)%v. The algorithm continues matching the SRE d+b. This produces
only one state, where the binding for v is updated:

S31 =









(b + c)vax

cdbda
{x = 0, v = b}










the second state of S2 has a constant RE as its leftmost token, so it can have
only one match

S32 =









(d + b)%v(b + c)vax

dbda
{x = 1}










S3 = S31 ∪ S32 contains 2 states.
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Step 4. The first state of S3, whose leftmost token is the RE (b + c) can
continue the match and produce a new state:

S41 =









vax

dbda
{x = 0, v = b}










the second state of S3 has a variable binding (d+b)%v as its leftmost token.
Again, the algorithm proceeds by matching d+b, and this produces one new
state only, where the binding of v is also updated:

S42 =









(b + c)vax

bda
{x = 1, v = d}










S4 = S41 ∪ S42 contains 2 states.

Step 5. The first state in S4, whose leftmost token is the already assigned
variable v, cannot continue the match, since its string has a prefix that does
not match with the fixed value of v.

The remaining state of S4 with leftmost token (b + c) can continue the
match and produce the new state:

S5 =









vax

da
{x = 1, v = d}










Step 6. Now the only state in S5 has leftmost token v and can continue the
match. Since v = d we obtain the new state:




ax

a
{x = 1, v = d}





Step 7. Finally, since x = 1 we obtain:




a
a

{x = 1, v = d}





which, in the final step, produces the empty state. So our match was suc-
cessful.
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5.2 Complexity of the algorithm

The complexity of this algorithm is simple to express: if n is the length of
the target string and m is the length (in characters) of the pattern, we can
make a worst-case evaluation in the following way:

– a variable binding is matched as a normal SRE, and a variable backref-
erence is matched as a constant string.

– an exponentiated subexpression can have n different matches (the ex-
ponent ranges in [0 . . . n] since a non empty subpattern, repeated more
than n times, would exceed the length of the string).

Note 1. The exponentiated and variable-bound subexpressions are not
requested to be simple RE: they may be another SRE, i.e. they may
contain other variables and/or exponents. However, since we stated that
the overall number of synchronized elements is fixed, also these variables
and/or exponents were counted.
Moreover, it is correct to count nested synchronization elements only
once, even if they are nested in an exponentiated expression: actually,
expanding such an expression will introduce only one new synchroniza-
tion element, repeated for a certain number of times.

– all the other RE subexpressions can be matched in linear time, using
well-known methods.

If we fix the number of possible synchronizations (both with variables
and exponents), say k, we have that the number of states generated by syn-
chronization tokens is at most nk. All the other RE matches can be consid-
ered linear w.r.t. n ·m, so the complexity of our algorithm is O

(
m · nk

)
, a

polynomial with a degree equal to the limit k of synchronizations.
We can summarize the results of this section in the following proposition:

Proposition 9. The membership problem for SRE with a limited number
of synchronization elements (i.e. less or equal to a fixed number k) can be
solved in polynomial time O

(
m · nk

)
, where n is the size, in characters, of

the target string and m is the size, in characters, of the pattern to match.

6 A user-friendly syntax for synchronized regular expressions

The second aim of this paper is to provide a common syntax for SRE ex-
tensions to be used in implementations such as text editors, command line
search utilities like grep [15], etc. In the rest of this section, the word syn-
tax will denote the syntax used to write SRE on a computer terminal, that
is obviously a little different from the formal syntax introduced in Sect. 2.
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Our idea is to let the user access the power of SRE at various levels,
since we observed that, even if backreferences and exponents are useful to
all classes of users, the beginner user usually applies them to solve a limited
number of common problems. In these cases the fully-general syntax may be
excessive and useless. Instead, we introduce other constructs that accomplish
these common tasks acting as macros (i.e., shortcuts, that can be expanded
into SRE syntax).

Let us first introduce the full syntax for SRE. We inherit the common
syntax used for RE and add the following constructs:

– /(e)var/ is a binding for variable named var to the SRE e.
– /var/ is a backreference for variable called var.
– {id} on the right of any expression binds the exponent called id to that

expression.

Of course in our syntax the character / is reserved, and can be accessed
literally using the expression //. This is a very common technique, actually
used for other metacharacters like \.

6.1 Simplified syntax for the non expert user

A very common use of backreferences is to group a substring and later use
its value in the same or another expression. For example, we may want to
find if a string contains two occurrences of the same substring, or we may
get a substring from an expression and use it in another one, that is mostly
common is search/replace or data extraction functions. In both cases, we are
usually interested in a generic substring that can be bound to a SRE variable
with expressions like /(.*)v/ and then referenced with /v/.

It seems quite unnatural to force the non expert user to this syntax for
such tasks. We may reintroduce the concept of asterisk wildcard, known by
all users as a part of the filename globbing utility of almost every UNIX
command shell. In these programs, the star has not the semantics of RE, but
stands for a generic string.

We say that, if a certain name is never bound to a SRE in an expression,
then it can be bound to any string in A∗. Thus, /v/ acts both as binding to
the (.*) expression and as backreference, where the first use of a particular
variable is its binding, and all the following are backreferences. This is what
the user usually expects.

Example 6. In some releases of the standard C header math.h, there is
a predefined macro called random(n) used to get a random number in
the range [0 . . . n]. This macro is expanded to the expression rand() %
n using the standard function rand() that returns a number in the range
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[0 . . . MAXINT]. Since this macro is not standard, many compilers do not
recognize it and generate an error.

The best way to solve the problem is using a synchronized regular ex-
pression over our source files in a search and replace function. We have
simply to use these expressions:

Search: random(/arg/)
Replace with: rand() % /arg/

Example 7. Let us suppose that, in a UNIX filesystem, we have a set of files
with filenames like:
invoice 103 1994, receipt 183 1994, invoice 151 1995,
receipt 1263 1995, ...

The two numbers in each filename are the invoice/receipt serial number
and its year, respectively. If we want to move all the invoices to the directory
invoices/ and all the receipts to the directoryreceipts/, renaming all
of them in the format year number, we may simply issue the command:

mv /type/_/number/_/year/ /type/s///year/_/number/

So far we have shown the utility of variables, but exponents are also a
very interesting extension introduced in SRE.

Example 8. If we have two texts in files F1 and F2, and suspect that one
has been obtained from the other by simply “shuffling” its paragraphs and
phrases and possibly deleting some of them (a very common technique!),
then we may check this using a UNIX-like command as the following:

cat F1 Sep F2 |
match (/*1/+/*2/+/*3/){n}
’cat Sep’
(/*1/+/*2/+/*3/){n}

The meaning of this command is the following:

1. concatenate the file F1with the file Sep, which contains only a separator
text that does not appear in F1 and F2, and then append F2 to the result;

2. pass the resulting file to the match command, that is supposed to return
true if its input matches the given SRE. Note that in the middle of the SRE
we used a standard UNIX shell substitution command (’cat Sep’)
that expands to the contents of the file Sep.

The SRE is forced by the presence of the separator text to match the
contents of both files with the expression (/*1/+/*2/+/*3/){n} that
means “the text is composed by three blocks, whose content is assigned
to the asterisk-variables, (mixed and) repeated n times”. If this expression
matches both files with synchronization between all the variables, then we
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know that they are both composed by n parts with the same contents. This
means that only the order is changed and possibly some parts have been
substituted by others. Note that the number of asterisks that we use in the
expression increases the granularity of the comparison.

6.2 Full syntax for the expert user

We show two examples where we use SRE syntax with its full power. The
expressions under consideration are of course very complex but, as we stated
in the introduction of this section, the general SRE syntax is reserved to
expert users.

Example 9. Another possible use of our SRE is in the field of data security.
One method to check if a data block (i.e., a document) has not been modified
consists in the creation of a document fingerprint [3]. This fingerprint is
obtained from the data by applying a hash function, and is stored separately
from the document itself for later checking.

Another method to secure data consists in changing the data themselves,
in a way that does not interfere with its contents, by adding a signature that
can be later checked to ensure that the original data was not changed. This
method is called watermarking [18] and is commonly used, e.g. to mark
digital pictures.

We suggest a simple variant of this procedure. Our aim is to protect the
data from malicious manipulations during transfer, that is we want to ensure
that nobody changed parts of the data, or simply mixed its contents “on the
fly” during the transfer (this is commonly called data integrity preservation).
Our method is valid whenever the attacker has at his/her disposal only a time-
and space- limited “view” on the data, as it is common when the attack is
done on a data stream being transferred over a packet network.

A random key is generated, composed by m segments. For example, let
m = 5. A key could be:

abc def ghi jkl mno

The key is then split in two parts, where the first part, that we may call data
key, contains the first m′ segments, and the second part is called auxiliary
key. The data key is inserted in the source data k times: its segments are
always in the given order, but may not be contiguous, that is there may be
data between the key segments.

In our example m′ = 3 and k = 2. After the key insertion, the data may
look like the following:

xxyxy abc y def xyy ghi xy abc xyy def yy ghi x
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Note that the key generation should be data-driven to ensure that the
inserted segments do not overlap with the source data (for example, in a C
source file the segments might be embedded in the code as comments).

To build the key file, we first write a random file and then insert both the
data key and the auxiliary key in it, following the same method used for the
data. The total number of key insertions must be exactly k.

In our example, the key file is the following:

23123 jkl 13 mno 145676 abc 4 def 37783 ghi 468

Then we send both data and key files. The numbers m, m′ are fixed a
priori as part of the communication protocol. Note that we do not explicitly
send the data key, or the number of times it can be found among the data.
This information will be retrieved directly by comparing the two files with
a SRE.

Given the hypothesis that the key segments can overlap with neither the
data nor the random file, and supposing that A is a set containing the alphabet
of both the key and the data files, we can apply the following synchronized
patterns to both files:

key file: ((A* /(A*)1/ A* /(A*)2/ A* /(A*)3/) +
(A* /(A*)4/ A* /(A*)5/)){n}

data file: (A* /1/ A* /2/ A* /3/){n}
If the match succeeds, then the data and the key files were not modified.

One may also use the matching algorithm to locate and remove the key
segments from the data in order to restore the source data.

Example 10. Web documents written in HTML usually contain links to
other resources. These links have a displayed form, that usually identifies
the link target, and an internal form, which contains other useful information
and, most interesting of all, the link address. For example, a line of HTML
like

Follow this
<A HREF="http://www.website.com/file.html">

link
</A>

would display in any browser as “Follow this link”.
If we print the page, we loose all the link addresses. It may be very

useful to automatically process the page and write these addresses near their
description text. We may do this with SRE in a search/replace command:

Search: </(A[ˆ>]*HREF="/([ˆ"]*)1/"[ˆ>]*)2/>
/(([ˆ<]|<[ˆA])*)3/<//A>

Replace with: /2/ /3/ <//A> (/1/)
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Example 11. Many of today’s documents contain internet addresses. Sup-
pose we want to highlight these links to be more visible on a page produced,
say, with LATEX. We may use the SRE syntax in a search/replace command
like this:

Search: /((http|ftp):////[ˆ \t\n]*)1/
Replace with: \textbf{/1/}

7 Related work

We already considered several related notions in the body of the paper; here
we limit ourselves to a few other significant related works. In the ECFG (Ex-
tended Context Free Grammars) [8] parameters have been added to nonter-
minal characters of a context free production rule in order to control the num-
ber of applications of the rule. So an instantiated value of the parameter acts
in this case as a counter. For instance, {A(N) −→ aA(N − 1), A(1) −→
a}, with {N ← 3} gives rise to A(3) −→ aA(2) −→ aaA(1) −→ aaa.
A class of such grammars with an infinite set of terminal characters repre-
sents a grammatical extension of logic programs, namely the DCG (Definite
Clause Grammars), used in several Prolog implementations. In these pro-
grams strings are atoms or terms of a first order language and a production
rule can handle a sequence of them.

Indeed, parameters occurrence within production rules dates back to WG
(van Wijngaarden Grammars), designed to define the syntax of contextual
programming languages and whose variants are widely used for compiler
constructions. A WG rule is a rule schema of an infinite set of context free
production rules. So the alphabet of nonterminal characters can be infinite,
whilst the alphabet of terminal ones is finite. The values a parameter can
assume are dealt with by a context free grammar. So WG grammars have
been considered as two level grammars.

Instead of pointing out the exact relationships among the previous gram-
mars, we notice the known fact that all of them are included in the contex-
tual grammars called AG (Attribute Grammars), RAG (Relational Attribute
Grammars), FAG (Functional Attribute Grammars) or CAG (Conditional
Attribute Grammars). Such extensions of context sensitive grammars are
also able to express the semantics of programming languages (the so-called
Knuth semantics). However all these extensions go far beyond our goals.
The same holds for the other extension of the DCG grammars, namely the
well-known λHHG (Higher Harrop Grammars). They represent the gram-
matical view of λ-Prolog as the DCG of Prolog.

We end with some words about the actual implementations of backrefer-
ences in common tools and languages. As in our SRE, backreferences in text
editing tools can be synchronized with an arbitrary preceding subexpression
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of their expression, which has been marked and grouped with parentheses.
For example, the expression (.*)\1 would match any string composed by
two identical halves. Here (.*) stands for “any sequence of any character”,
and \1 is a backreference to the value assigned to (.*). In our SRE syntax,
this would be expressed with the pattern (A∗) %vv.

SRE variables act exactly as backreferences. Moreover, they “name” the
subexpressions, so references are given in a clearer way than the implicitly-
indexed one. The rule “backreferences can only be done after binding” is
forced by the syntax in the indexed backreference method, and is given as a
semantic rule in our definitions. Our SRE also allow a different kind of syn-
chronization, i.e. exponentiation, where the content of two subexpressions
may change but their repetitions must be the same.

A well known implementation of backreferences is in the GNU regex
library [11]. Thanks to this library, many GNU tools like egrep [15] sup-
port backreferences in RE. The GNU matching engine demonstrates our
claims about complexity: when backreferences are present in the regular
expression, it switches from a very fast DFA algorithm to a NFA [9]. Actu-
ally the implementation is very similar to a (mathematically defined) NFA,
but diverges from it in some points.

The price to pay for this extended recognition power is that the NFA
implementation is an exponential algorithm with very extensive use of re-
cursion. In other words, the algorithm is slower and it may potentially need
much more memory to run.

Some attempts have been done to realize a faster, still powerful extended
DFA model. To our knowledge, the best done so far is to slightly extend the
boundary between the DFA and NFA domain, that is the regex engine can
match more patterns without switching to NFA.

Another implementation of backreferences is in the PERL language [20].
We know many books that discourage the use of backreferences in PERL
because this could make the matching very complex and time consuming
[9]. PERL also allows one to use an indefinite number of backreferences
(while the GNU code limits this number to nine), and this appears to be
unsafe, since the unexperienced user may feel free to use them too many
times, thus writing very inefficient programs.
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